Numerical Study using ADM for the Modified Regularized Long Wave equation
نویسندگان
چکیده
The Modified Regularized Long Wave (MRLW) equation is solved numerically by Adomian decomposition method (ADM) with some initial conditions. The method leads to high accurate and efficient results. Three polynomial invariant conditions are evaluated to determine the conservation properties of the problem. The convergence of Adomian decomposition method applied to the MRLW equation is proved. Moreover, the interaction of solitons and the development of the Maxwellian initial condition into solitary waves are considered.
منابع مشابه
Optimization of Solution Regularized Long-wave Equation by Using Modified Variational Iteration Method
In this paper, a regularized long-wave equation (RLWE) is solved by using the Adomian's decomposition method (ADM) , modified Adomian's decomposition method (MADM), variational iteration method (VIM), modified variational iteration method (MVIM) and homotopy analysis method (HAM). The approximate solution of this equation is calculated in the form of series which its components are computed by ...
متن کاملSolving nonlinear space-time fractional differential equations via ansatz method
In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...
متن کاملTopological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کاملOn the Exact Solution for Nonlinear Partial Differential Equations
In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...
متن کاملNUMERICAL SOLUTION OF BOUSSINESQ EQUATION USING MODIFIED ADOMIAN DECOMPOSITION AND HOMOTOPY ANALYSIS METHODS
In this paper, a Boussinesq equation is solved by using the Adomian's decomposition method, modified Adomian's decomposition method and homotopy analysis method. The approximate solution of this equation is calculated in the form of series which its components are computed by applying a recursive relation. The existence and uniqueness of the solution and the convergence of the proposed methods ...
متن کامل